老廃物の排出を積極的に促す看護技術の検討　第二報

－弱酸性美容洗髪法（ベル・ジュバンストリートメント）における洗浄液の分析－

寺嶋久美*1, 三宅玉恵*2, 山岸仁美*1, 新田なつ子*1, 遠木望幸*1,
植田　彩*1, 山本利江*3, 田中美智子*1, 須永　清*2

【抄録】

第一報で、シャンプー洗髪後さらに洗髪をして、アミノ酸及びその誘導体が洗髪洗浄液中に認められなくなっ
た状態を確認した後に、弱酸性美容洗髪法を施行するとその洗髪洗浄液中に再びかなりのアミノ酸及びその誘
導体が排出されること、さらに通常のシャンプー洗髪液では検出されないエタノールアミン及びトリプトファ
ンが検出されることを報告した。

今回は洗髪洗浄液中の尿素やアミノ酸類の質及び量に関して、弱酸性美容洗髪法の還元剤塗布時と酸化剤入
りの第一洗浄液 (pH4.0), 第二洗浄液 (pH3.5) による洗髪時の頭皮に対する手指圧の強さ及び被洗髪者のこ
の洗髪法の経験の有無による影響を検討した。その結果は、弱酸性美容洗髪法による洗髪洗浄液中のアミノ酸
類の排出、特に洗髪洗浄液中の尿素及びグルタミン（グルタミン酸を含む）の排出量の増加は最初の還元剤
の頭皮への十分な塗布と酸化剤入りの洗浄液による洗髪が不可欠であることが示唆された。しかし、還元剤処
理及びその後の洗髪時の手指圧の強さは洗髪洗浄液中のアミノ酸類の質及び量にあまり影響を与えないことを
示した。また、弱酸性美容洗髪の初回時と数週間後の 2 回目の洗髪洗浄液との間には、洗浄液中の上記物質を
含むアミノ酸類の質及び量には有意差は認められなかった。

【キーワーズ】 老廃物の排出、弱酸性美容洗髪法、洗髪強度、洗髪洗浄液、アミノ酸分析

I 序論

弱酸性美容洗髪法（ベル・ジュバンストリートメント）がカネミ油療患者のPCBの皮膚的排出に有効
であることが1980年に山崎10により初めて報告され
た。その後、三宅ら7によって看護技術の一つとし
てこの洗髪法を導入するための基礎資料を得ること
を目的に、その洗髪洗浄液を試料にキャビラリー電
気泳動分析及びアミノ酸分析を行った。その結果、
シャンプー洗髪後、さらに洗髪してその洗浄液中に
アミノ酸類の生成物質があまり認められなくなっ
たことを確認した後、弱酸性美容洗髪法を施行する
ことによって、再び多量のアンモニア代謝産物 [尿
素, グルタミン (グルタミン酸を含む), クレアチ
ニン, 尿酸等] を排出させ得るのに対して, タンパ

*1 Kumi Terashima, Hitomi Yamagishi, Natsuko Nitta, Miyuki Hekizono, Aya Ueta, Michiko Tanaka：宮崎県
立看護大学 *2 Tamae Miyake, Kiyoshi Sunaga：元宮崎県立看護大学 *3 Toshie Yamamoto：千葉大学看護学部

—39—
ク質合成に必要なアミノ酸類の排出は比較的低かったことを報告した。本稿はその第二報である。

前報の結果は、脊機能が低下した患者に対して、アンモニア関連の代謝産物の排出除去に弱酸性美容洗髪法が有用な看護技術であることを示唆している。洗髪は患者の清潔ケアを行うための看護技術の一つであるが、洗髪時の手指圧の強弱は受け手の快くを目にするが、その方法が原則である。そこで今回は、施術者としての看護師の手指圧の加え方が洗髪洗浄液中のアミノ酸類の量排出量に違いをもたらすかどうかを検討するために、看護師が意図的に頭皮への手指の力に強弱をつけた洗髪と、その洗髪洗浄液中のアミノ酸類の量排出量の比較を行なった。また、被施術者がこの洗髪法を初めて受けた場合と2回目との比較も行なった。

Ⅱ 対象と方法

1. 対象

弱酸性美容洗髪法の施術者は、本洗髪法を実施している美容師から指導を受け、これまで施術したことのある看護師4名である。被施術者は4名の健常成人（A：42歳、B：44歳、C：46歳、D：54歳、全て女性）とこの実験の意義に納得して応じた本洗髪法未経験の健常成人2名（E：19歳、F：20歳、いずれも女性）の計6名である。施術者と被施術者は同一のベアで行なった。

2. 方法

1）弱酸性美容洗髪法の手順

まず念入でシャンプー洗髪を2回行い乾燥させた。次に約80mlの還元剤を頭皮に塗布し、ポリエチレンフィルムで頭部を密封し、約8分間放置する。その後ポリエチレンフィルムを取り除き、①酸化剤10ml（pH4.5）を含む1,000mlの溶ですぎ洗し、この洗髪洗浄液を「ベル処理液」とした。引き続いて、②酸化剤80ml＋水道水480mlをpH4.0に調整し、30℃で所定の循環器で約10分間循環させ、洗髪洗浄液を分離する。途中pHが変化した場合、1%クエン酸水溶液でpH4.0を維持するように調整する。最後に③pH3.5に調整した酸化剤80ml＋水道水480mlをpH3.5に調整しながら同様の条件で循環させ、洗髪洗浄液を分離する。最終的に②と③の洗髪洗浄液を混合して「処理後の洗浄液」とした。また、E、Fを対象とした実験では「ベル処理液」と「処理後の洗浄液」の結果を合計し、これを「総洗浄液」の結果として示した。

被施術者A～Dへの施術で、手指圧の差による排出状態の違いを検討するために意図的に頭皮に対する手指の力の強弱を3段階（0：頭皮に塗布・流すのみ、1：軽度の手指の強さ、2：充分な手指の強さ）に変えて実施した。被施術者G、Hへの施術では、手指の強さは常に充分な強さで行なった。被施術者A～Dへの施術期間は3～4か月で、施術は1週間以上の間隔をあけて行なった。被施術者E、Fへの初回と2回目の施術間隔は、5～6週間である。

2）分析試料

上記「ベル処理液」及び「処理後の洗浄液」を超遠心分離機（optima TL, BECKMAN社製）で遠心（30,000rpm, 20分, 4℃）後、その上清に1/10容の50%スルフォサルチル酸を加え除タンパク後、再度同じ条件で遠心し、その上清を分離した。この上清を0.45μmのフィルター（サンブルレッド4-HV: Millipore）で濾過し、その濾液に同量のBuffer（Li-S:Li-R=13:9）を加え、分析試料とした。

3）アミノ酸分析

上記分析試料200μlをアミノ酸分析装置（Beckman 6300, BECKMAN社製）で分析し、得られたアミノ酸分析像を付属のSoftwareで解析した。

4）統計処理

被施術者間の洗髪時の頭皮に対する手指圧の強さ
の違いによる洗髪洗浄液中のアミノ酸類の検定は二元配置分散分析で行ない、[ベル処理液]と[処理後の洗浄液]間のアミノ酸類の差については対応のあるt検定を行なった。弱酸性美容洗髪初回と2回目の[総洗浄液]中のアミノ酸類の差について、対応のあるt検定を行なった。（Microsoft社：Microsoft Excel X使用）

３．倫理的配慮

被洗髪者には研究の目的と方法を伝え、参加は自由意思であること、研究に同意しない場合であっても不利益は受けないこと、いつでも取りやめることができること、取りやめることによって不利益を受けないこと、被洗髪者になることで気分の不快等があったらすぐに中止することを説明した。プライバシーを守り、守秘義務を徹底する旨説明を行い、参加への同意を得た。

III 結果

1．還元剤塗布及び洗髪時の頭皮に対する指先の強さの相違が洗浄液中のアミノ酸類に与える質的・量的影響、[ベル処理液]中と[処理後の洗浄液]中のアミノ酸類の比較

洗髪強度の違いによる被洗髪者ごとの[ベル処理液]及び[処理後の洗浄液]中の遊離アミノ酸類量を表1に示す。統計処理を用いて分析結果は以下のとおりである。

1）還元剤（チオクタノールアミン）は[ベル処理液]中において存在し、頭皮への摂り込み及び洗髪の指圧の強さが強くなるにつれて洗浄液中の還元剤が酸化されて有効（p<0.01）に減少した（表2）。被洗髪者間での有意差は認められなかった。

2）還元剤（チオクタノールアミン）以外のアミノ酸類では、ホスホセリンとヒスタジンを除いて（p<0.01）、頭皮への摂り込みの強さ及び洗髪の指圧の強さと洗浄液中のアミノ酸類の間に有意差は認められなかった。

3）ホスホセリンとチロシンを除く尿素及びグルタミン（グルタミン酸を含む）を始めとする多くのアミノ酸類は、[ベル処理液]中に有意に多く認められた（表3）。

2．弱酸性美容洗髪初回と2回目の間の洗髪洗浄液中のアミノ酸類の質的・量的相違

表4に示す通り、タウリンなどのいくつかの例外は認められるが、初回も二回目も洗髪洗浄液中のアミノ酸類には、質的にも、量的にも有意差は認められなかった。また、同一被洗髪者を1～2週間間隔で数回弱酸性美容洗髪法を行った表1の結果からも同じような傾向が認められた。

IV 考察

洗髪は看護の基本的な技術の一つとして重要である。その技術の直接目的は毛髪や頭皮に付着した汚れや分泌物を取り除き、身体の清潔が維持できるように援助することにある。しかし、我々は前回の報告で、分泌物を洗い流し、清潔にするだけではなく、分泌物を積極的に促す技術として弱酸性美容洗髪法（ベル・ジュバンストリートメント）を洗髪技術に導入し、腎障害等の排泄機能が低下した対象に対する積極的な看護の一環として行う可能性を報告した。

今回はまずこの技術を看護に導入するに当たって、還元剤の塗布及び洗髪の際の指先の力の入れ方の相違による洗髪洗浄液中のアミノ酸類の質的、量的相違の有無を検討した。結果は、ホスホセリンとヒスタジンを除いて、頭皮に対する指圧の違いによる洗髪洗浄液中のアミノ酸類には、質的にも、量的にも有意差は認められなかった。しかし、還元剤処理後の[ベル処理液]中とその後の酸化剤による洗髪後の[処理後の洗浄液]中のアミノ酸類の比較で、尿素や多くのアミノ酸類、特にグルタミンが[ベル処理液]中に有意に多く認められた。
表1 ベル処理液及び処理後の洗浄液中の遊離アミノ酸類量（μmol/whole solution）

<table>
<thead>
<tr>
<th>洗浄順位</th>
<th>洗浄強度</th>
<th>洗浄液の種類</th>
<th>オルソアミノ酸</th>
<th>メチオニン</th>
<th>シスチジン</th>
<th>ロイシン</th>
<th>ロイシン-α-メチル化</th>
<th>ロイシン-β-アミノ</th>
<th>ロイシン-β-アミノ-α-メチル化</th>
<th>ロイシン-α-アミノ</th>
<th>ロイシン-β-アミノ-α-メチル化</th>
<th>サルコシン</th>
<th>アラニン</th>
<th>シトルリン</th>
<th>バリン</th>
<th>シスチチン</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1</td>
<td>0</td>
<td>ベル処理液</td>
<td>22</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>54</td>
<td>6</td>
<td>5</td>
<td>22</td>
<td>16</td>
<td>0</td>
<td>1</td>
<td>30</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>処理後の洗浄液</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>98</td>
<td>7</td>
<td>5</td>
<td>21</td>
<td>18</td>
<td>0</td>
<td>1</td>
<td>33</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>処理後の洗浄液</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>251</td>
<td>18</td>
<td>18</td>
<td>81</td>
<td>308</td>
<td>0</td>
<td>2</td>
<td>24</td>
<td>27</td>
<td>16</td>
</tr>
<tr>
<td>B 1</td>
<td>0</td>
<td>ベル処理液</td>
<td>19</td>
<td>2</td>
<td>9</td>
<td>0</td>
<td>139</td>
<td>9</td>
<td>6</td>
<td>28</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>18</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>処理後の洗浄液</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>706</td>
<td>26</td>
<td>15</td>
<td>70</td>
<td>376</td>
<td>0</td>
<td>1</td>
<td>48</td>
<td>26</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>処理後の洗浄液</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>70</td>
<td>7</td>
<td>3</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>C 1</td>
<td>0</td>
<td>ベル処理液</td>
<td>20</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>78</td>
<td>6</td>
<td>4</td>
<td>15</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>処理後の洗浄液</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>260</td>
<td>15</td>
<td>11</td>
<td>46</td>
<td>310</td>
<td>2</td>
<td>0</td>
<td>33</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>処理後の洗浄液</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>211</td>
<td>18</td>
<td>13</td>
<td>53</td>
<td>242</td>
<td>0</td>
<td>1</td>
<td>40</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>D 1</td>
<td>0</td>
<td>ベル処理液</td>
<td>17</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>98</td>
<td>10</td>
<td>8</td>
<td>28</td>
<td>199</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>処理後の洗浄液</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>91</td>
<td>10</td>
<td>8</td>
<td>28</td>
<td>199</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>処理後の洗浄液</td>
<td>12</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>64</td>
<td>5</td>
<td>3</td>
<td>17</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>処理後の洗浄液</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>109</td>
<td>10</td>
<td>7</td>
<td>36</td>
<td>215</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>処理後の洗浄液</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>105</td>
<td>7</td>
<td>5</td>
<td>26</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

※-アミノ酸: メチオニン, シスチジン, ロイシン, ロイシン-α-メチル化, アルギニン, オルソアミノ酸, サルコシン, ヘビシン, アラニン, シトルリン, バリン, シスチチン, メチオニン, シスチジン, ロイシン, ロイシン-α-メチル化, サルコシン, アラニン, シトルリン, バリン, シスチチン。
表 2 ベル処理液中のチオエタノールアミン二元配置分散分析結果

変動要因	変動	自由度	分散	分散比	P-値	F-値
洗髪強度	503	2	252	61	0.0001	5.1
被洗髪者	12	3	3.9	0.94	0.48	4.8
誤差	25	6	4.1			
合計	540	11				

表 3 ベル処理液と処理後の洗浄液中のアミノ酸類量の差

アミノ酸類	P	アミノ酸類	P
ホスホセリン	0.16	イソロイシン	1.3E-06**
タウリン	0.02*	ロイシン	1.8E-06**
尿素	0.004**	チロシン	0.17
アスパラギン酸	1.7E-06**	フェニルアラニン	0.00001**
テレオニン	3.3E-07**	アミノ酸態酸	0.047*
セリン	4.8E-07**	エチノールアミン	2.4E-06**
グルタミン	3.6E-07**	オルニチン	0.00004**
グリシン	9.8E-06**	リジン	3.1E-07**
アラニン	5.9E-07**	ヒスチジン	3.1E-09**
シトルリン	0.00002**	アルギニン	1.4E-06**
バリン	2.7E-06**	プロリン	0.0003**
シスチン	1.3E-11**		

（対応のあるt検定） *p＜0.05， **p＜0.01

以上の結果を、最初の還元剤塗布を省いた場合、尿素やアミノ酸類が洗髪洗浄液中にあまり認められなくなるとする前報の結果に照らし合わせて考えると、還元剤の塗布を充分に行なっていても、その後の酸化剤を含む洗浄液で洗髪を完全に行わないと尿素やグルタミン等のアンモニア代謝産物（老廃物）はあまり排出されないことを示唆している。しかし、酸化剤入り洗浄液での洗髪時の頭皮に対する手指圧の弱さは、洗髪洗浄液中の尿素及びアミノ酸類の量にはあまり影響を与えないと今回の結果は示いている。このことは、今回の結果だけからはっきりと断定できないが、本洗髪法を着用に導入するに当たっては、新人でも還元剤の塗布をしっかり行ない、その後必ず充分量の酸化剤入り洗浄液で軽く洗髪を行うような指導するだけで、ベテランと同じくらいのアンモニア代謝産物等の老廃物を排出させ得ることを示唆している。

次に被洗髪者のこの洗髪法に対する効果を、初回と2回目とその洗髪洗浄液中のアミノ酸類、特にアンモニア代謝産物の排出量で検討した。結果はかなり個人差が認められるものの、その排出効果は初回でも2回目でもあまり差はないことを示している。また、表1の結果でも、同一被洗髪者の1～2週間毎の2回洗浴洗浄液中のアンモニア酸類の結果は上記推定を支持している。これらの結果は、弱酸性美容洗髪法を短期間に行なっても一回で排出される老廃物の量はあまり変わらないが、繰り返すことによって排出の効果が高まることを示唆している。

また、第一報の結果を見てみると、一事例報告ではあるが、[湯洗]及び[シャンプー]洗浄液中の尿素とグルタミン（グルタミン酸を含む）のそれぞれの合計と、これらの前処理を行なった後の弱酸性美容洗髪法による洗髪洗浄液中のそれぞれの量を比較すると、尿素はほぼ同量が排出されているが、グ
| 被洗髪者 | 洗髪 | 洗髪強度 | 検体液の種類 | ｴﾈﾙｷﾞｰディミミン | ホスホセリン | クアリン | ホスホセリン ﾌﾞﾙミミン | 腱素 | アスパラギン酸 | アシオニン | トレオニン | セリン | グリシン | グルタミン | グルタミン-δグルタミン | |
|----------|------|-----------|--------------|------------------|-------------|--------|-----------------|-------|-------------|----------|--------|--------|--------|---------|---------|-----------------|------|
| E | 初回 | 2 | 総洗浄液 | 12 | 96 | 49 | 30 | 373 | 52 | 51 | 181 | 724 | 1 | 0 | 1 | |
| | 二回目 | 2 | 総洗浄液 | 13 | 20 | 10 | 4 | 195 | 35 | 28 | 108 | 814 | 1 | 0 | 1 | |
| F | 初回 | 2 | 総洗浄液 | 81 | 45 | 37 | 7 | 324 | 30 | 28 | 98 | 594 | 1 | 0 | 1 | |
| | 二回目 | 2 | 総洗浄液 | 12 | 15 | 6 | 0 | 236 | 29 | 21 | 104 | 582 | 1 | 0 | 1 | |
| 被洗髪者 | 洗髪 | 洗髪強度 | 検体液の種類 | サルコシン | γ-アミノアドニン | グリシン | アラニン | シトルリン | β-アミノイソレウリン | パリン | システイン | メチオニン | ジスタチオニン | |
|----------|------|-----------|--------------|------------------|-------------|--------|--------|--------|-----------------|-------|--------|--------|---------|---------|-----------------|------|
| E | 初回 | 2 | 総洗浄液 | 0 | 1 | 116 | 52 | 28 | 2 | 47 | 25 | 1 | 1 | 0 | 1 | |
| | 二回目 | 2 | 総洗浄液 | 1 | 0 | 62 | 35 | 16 | 1 | 26 | 33 | 0 | 1 | 0 | 1 | |
| F | 初回 | 2 | 総洗浄液 | 0 | 1 | 48 | 26 | 13 | 1 | 30 | 30 | 0 | 1 | 0 | 1 | |
| | 二回目 | 2 | 総洗浄液 | 0 | 1 | 67 | 32 | 15 | 1 | 26 | 30 | 0 | 1 | 0 | 1 | |
| 被洗髪者 | 洗髪 | 洗髪強度 | 検体液の種類 | イソロイシン | ロイシン | チロシン | フェニルアラニン | β-アラニン | β-アミノイソレウリン | トリプトファン | エタノールアミン | アンモニア | |
|----------|------|-----------|--------------|--------------|--------|--------|--------|--------|-----------------|-------|---------|---------|-------------|---------|-----------------|------|
| E | 初回 | 2 | 総洗浄液 | 14 | 27 | 6 | 14 | 2 | 2 | 32 | 0 | 20 | 39097 | 42668 | 1 | |
| | 二回目 | 2 | 総洗浄液 | 10 | 17 | 3 | 10 | 0 | 2 | 4 | 6 | 7 | 43542 | 37734 | 1 | |
| F | 初回 | 2 | 総洗浄液 | 8 | 13 | 5 | 8 | 0 | 1 | 5 | 7 | 6 | 38542 | 37734 | 1 | |
| | 二回目 | 2 | 総洗浄液 | 9 | 13 | 3 | 6 | 2 | 17 | 0 | 6 | 0 | 3 | 0 | 1 | |
| 被洗髪者 | 洗髪 | 洗髪強度 | 検体液の種類 | オルニチン | リジン | 1-メチルヒスチジン | ヒスチジン | 2-メチルヒスチジン | アンセリン | カルシオン | アルギニン | ヒドロキシンプロリン | プロリン | |
|----------|------|-----------|--------------|--------------|--------|--------|--------|--------|-----------------|-------|--------|--------|---------|---------|-----------------|------|
| E | 初回 | 2 | 総洗浄液 | 37 | 26 | 1 | 163 | 0 | 7 | 0 | 17 | 0 | 0 | 0 | 1 | |
| | 二回目 | 2 | 総洗浄液 | 41 | 17 | 1 | 127 | 0 | 0 | 0 | 11 | 0 | 7 | 0 | 1 | |
| F | 初回 | 2 | 総洗浄液 | 40 | 14 | 0 | 119 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 1 | |
| | 二回目 | 2 | 総洗浄液 | 37 | 12 | 0 | 108 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 1 | |
ルタミン（グルタミン酸を含む）は10倍に近い量が弱酸性美容洗髪法で排出されている。この被洗髪者は前日シャンプー洗髪をしていることから、[浴洗]と[シャンプー]時に洗い出される尿素とグルタミン（グルタミン酸を含む）のそれぞれの合計を頭皮からの一日排泄量とすると、この弱酸性美容洗髪法によって頭皮からの一日排泄量を超えるアンモニア代謝産物を排出させ得る可能性が考えられる。体内でのアンモニアの解毒が主として肝臓での尿素合成とグルタミン合成であること、この洗髪法ではタンパク質合成に必要なアミノ酸はあまり排出されないことを考え合わせると、PCBのみならず、薬物等による尿毒症患者に対しても、この洗髪法を繰り返し行うことによって、内部環境を維持しながらその排出効果が期待される。ただし、これは一例ののみの結果であるので、さらなる検証が必要である。少数例からの結果ではないが、前回（第一報）と今回実験結果は、この弱酸性美容洗髪法を、清潔維持のための技術のみならず、体液の正常化をもたらし、全ての看護師にとって容易に修得でき、繰り返し行うことにより効果が高まる重要な看護技術として考慮すべきとする根拠を提示していると考えられる。

本研究の一部は、宮崎県看護学術振興財団助成事業の助成により行なった。

引用文献

1）山崎伊久江：PCBの短期的体外排出法確立への試み、日本科学者会議・環境科学総合研究会主催シンポジウム・公開講演会―今日のPCB問題報告要綱、13～14、1980。

2）金本ギユ、寺島久美、山本利江、倉井信子、須永清：老廃物の排出を積極的に促す看護技術の検討—第1報、宮崎県立看護大学研究紀要、2（1）、12～18、2002。

—45—
Nursing skills to actively help with the discharge of waste matter Part II:

—Analysis of acidulously used hair washing preparation using the Belle Jouvence Hair Treatment techniques—

Kumi Terashima*1, Tamae Miyake*2, Hitomi Yamagishi*1, Natsuko Nitta*1, Miyuki Hekizono*1, Aya Ueta*1, Toshie Yamamoto*3, Michiko Tanaka*1, Kiyoshi Sunaga*2

[Key words] discharged waste matter, acidulous hair washing, applied shampoo pressure, used hair washing preparation, amino acids analysis

*1 Kumi Terashima, Hitomi Yamagishi, Natsuko Nitta, Miyuki Hekizono, Aya Ueta, Michiko Tanaka : Miyazaki Prefectural Nursing University
*2 Tamae Miyake, Kiyoshi Sunaga : Miyazaki Prefectural Nursing University (formerly)
*3 Toshie Yamamoto : School of Nursing, Chiba University